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Abstract —Torsion problems for bonded bars composed of two semi-infinite bars bonded to each
other by an elastic adhesive layer are investigated. Stress analysis proceeds considering the stress
singularity at the corners by making use of the scries expansion technique. and the problem is
reduced to infinite sets of systems of lincar equations. We introduce the generalized stress intensity
factor at the corner. Stress ficlds in the neighborhood of the corners are shown by using only this
factor. The values of the gencralized stress intensity factor are obtained for the various mechanical
and geometrical propertics of the semi-infinite bars and adhesive layer.

INTRODUCTION

A shaft is often constructed from different bars bonded to cach other by an adhesive layer.
When such a shaft is subjected to torsion, extremely high stresses are induced at the corner
in the bonded surfaces. In such a kind of problem, the mechanical behavior of the adhesive
layer is approximated by that of a spring (Erdogan and Ratwani, 1971 ; Tsuji et al., 1985).
However, when the adhesive layer is treated elastically, the stress singularity occurs at the
corner. The problems related to this kind of singularity have been considered by many
investigators. At first, Williams (1952) obtained the order of the stress singularity at the
corner in extension problems. Keer and Freeman (1970) investigated the torsion of a finite
elastic cylindrical rod partially bonded to an elastic half-space by using integral transform
and Dini series. The authors treated the torsion problem of the stepped bar (Tsuji et al.,
1982) by using a series expansion technique. Karasudhi et al. (1984) investigated the torsion
problem of a bar partially embedded in a layered clastic half space, and obtained the stress
singularity at the corner for the torsion problem by using the method proposed by Williams
(1952).

In such problems with the stress singularity, the gencralized stress intensity factor,
which is similar to the stress intensity factor for the crack, can be introducd at the corner.
The stress fields in the neighborhood of the corner can be represented by this factor. Only
a few investigations have been done, though this factor is important in order to consider
the distraction of an object with corners. Theocaris and Petrou (1987) obtained the order
of the singularity and this kind of factor ncar corners of a regular polygonal hole by using
the complex stress function. Groth (1988) calculated the generalized stress intensity factor
at the interface corners in bonded joints by using the finite element method and used it for
the prediction of failure in some single lap joints. In our previous paper (Tsuji et al., 1982),
we did not obtain this parameter. Morcover, it is important to consider the adhesive layer
for the problem of the stepped bar.

Therefore, we intend to investigate the generalized stress intensity factor in a torsion
problem for a bonded bar, which is composed of two semi-infinite bars bonded to each
other by an elastic adhesive layer. The stress analysis can be performed using a similar
method to the previous paper (Tsuji et al., 1982). In the present analysis we use Jacobi
polynomials instead of Chebyshev polynomials, and some integrals of the products of the
Bessel functions can be obtained in closed form. The relationships between the generalized
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stress intensity factor and mechanical and geometrical properties of the semi-infinite bars
and the adhesive layer are obtained.

STRESS FUNCTION

We use here the cylindrical coordinates (r, 8, z). In the case of an axisymmetric torsional
stress field, the displacements and the stresses can be expressed by using Boussinesq’s stress
function 4,(r, -) as follows:

=1 = )

where G is the shear modulus and 4,(r, ) is an axisymmetric harmonic function.

STRESS ANALYSIS

We consider bonded shafts as shown in Fig. 1. These bonded bars are analyzed by
separating into the semi-infinite circular cylinder domains [1], [2] and the adhesive layer
domain [3] as shown in Fig. 1, and introducing continuity conditions on the z =0 and
z = h planes. In the following expression, superscripts I, 2 and 3 respectively denote
quantities corresponding to the semi-infinite bars {1], [2] and the adhesive layer [3]. Thus,
the boundary conditions are denoted as:

. h £z < ), i
tu(r,2) =0, T= an rPru.(rn)dr{02:> -w), i=2 2)
(1]
(0 L€z < ,l), { ==
3 tArh) (0<r<ry
}.(r,h) = { 0 (re<r<r) 3)
. 1.(r.0) (0<r<ry)
w.(r,0) = { M0 er<r @)
vy(rh)y =vl(r,h)y (O<r<r) 5
6 (r.0) =0)(r,0) (0<r<r,y) 6

where

{rycey<ry)

{ry<ry<ey)

Fig. 1. Torsion problem of a bonded bar.
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=1, n=3 when r,<ry<nr,

(=3 n=1 when ry<r, <r,.

In the following analysis, we use the subscripts £ and  to represent the twocasesr; < ry < r;
and ry < r, < r,, respectively.

In the previous paper (Tsuji et al., 1982), we represent the shear stress 7. on the
interface plane by using the Chebyshev polynomial in consideration of the stress singularity
at the corner. However, in the present analysis, we should represent the shear stress t,. on
the - = 0 and - = A planes by using the Jacobi polynomial G,(p.q: x), because the Jacobi
polynomial has an orthogonal relationship with the weight function (1—-x)?"“x*~' and
some integrals of products of the Bessel functions and the Jacobi polynomials can be given
in closed form. Hence. the shear stress t,. on the z = 0 and = = h planes are represented
with respect to unknown coefficients x; as follows:

t,;'_.(r.h)_t,}:(r.h)_r (r)z}""" (=DM +RT =x)) ( ] .rz)
™ -r—;{l-r_. ,,;,x" Il —x,+k) G 2—'\"2'?

~

X
Y

2 3 2)-x2 x — 1) A —_ 2
e e o f ()5 e (o)
k

™ ™ ry o F(l=x;4+4k) 3

-

O<r<r) ()

where k, (i = 1, 2) is the order of the stress singularity, ['(x) is the Gamma function and ¢*
is the maximum shcar stress when the bar [1] is subjected to the simple torque T:

t* = 2T/(nr}).

From eqns (2), (3) and (4), x{, x3 can be obtained as:

_’i‘ (I-x)2-x)) z_"f (1 —x;)(2—x,)
th,—r—:’ '—*—-—-2‘—'——, x‘,—;g——-—z—————-. 8)

To represent the stress fields with the unknown coefficients x; (i = 1,2), we choose the
stress function 4; in the regions [1], [2] and (3], respectively, as follows:

A(r2) = Ag(r* =2+ 4,222 =32+ Y, A, Jo(a,r)e R

me |

A3(r,2) = Bo(r’=2:Y)+ B,(2*=3r'2)+ Y. B, Jo(B.r)e™

ma !

A(r.2) = Co(r* =2+ Co(22=3r2) + i [C.. cosh (y=) + C7 cosh {1, (= = 1)} ] Jo(ymr)

me |

&)

where J,(x) is the first kind of Bessel function of order n and A4,, 4;, A.. a,.. etc.
are unknown coefficients which will be determined by the boundary conditions (2)-(6).
Substituting these functions into eqn (1), displacement and stresses are given for each
region. Using the boundary conditions (2), .., §,, and y,, are obtained as the positive roots
of the following equation :
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J2o2nr)) =0, a,r, = Bury =vary (0<a, <x;...). (10)

Using the orthogonal relationship for the Bessel functions and the boundary conditions (3)
and (4), 4,. By. Cy. 4,,. B,, and C., can be represented by x| in eqn (7) as follows :

Gg r‘f 2 i

S e Ty g Rl

G, f; 2 N

6 1; I e e e Y

Bor: s R E=k)l-xp °
G, 2

6C9f§ ': £ x;;

P R RS Ty gy

G, ke e
i Se T ()

k=0

C,i}’i% sinh (v.0) = ¥ X /i (?)
1

k=0

-

) QG’ . 7 g
= Cayn 5 sinh (k) = ¥ X

k=8
163 < 2 g3 r
B =% x;J,;,,,(--‘) (tn
T k=0 rx

where Ji (1) is the integral of the product of the Bessel function and the Jacobi polynomial,
and cun be obtained in closed form as follows :

A=Y+ —x)0?

j,’im(;) = r{l —Ki-}-k)f?(amrl)

!
j X2 =x) NG 2 -5, 25 X, r, ) dx
@

!amrxji'ij;‘—»;&f&{ig’”r‘) (12}

= — U - K, 2
= (- Y'GU h.)f( 2 Ji(@nr)

Substituting eqn (11} into eqns (9) and using eqn (1), the displacement and the stresses for
cach region are represented by x| as:

[1] h<-<x)

i - « % -

e‘:th . fG; rZ ry oy e
. = -ZA“w;+_3- 2 xk‘ 2 Jl(zmr)e EWERY

nt nt r ka0 "ol o S0

'f,l,; _ i 1 s i ry J ~a_{z-h}
<= Xk z Sim ;; Wxnrye™
1

*
T kw0 "=

'{(;; _ r & i - 1 fl’ - R (3~ A}
= Z Xi Z Jk,m J!(amr)e (13)
T Fikaa  m=t ry
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()

2] (-o<:z<0)

L';"G, . rG| G|r| l'-
rt = =28 rt* Gz kgo mgl Bmr: J(ﬂ,,,r)eﬂ
T . .
f’: Z Xi Z JIE.M( z)lz(ﬂm’)ep"-
T r.r 3 s
pry rir |+ z xi Z Jk.m( 2>J|(ﬁm’)eﬁ (14)
3] O<z<h
Ji (r)cosh(y,,,)
3G, _ rG, G,r. rr G & | & rs
r,t 2ol |f" G\" ’|+Gu§‘ ‘km-I Vm"lsmh(?mh) J1(mr)
G Ji.( h{y.(z—h
_-_1 X z im(1)cosh {y,,(z )} J,Gir)

Gy Ymf 1 sinth (7,,4)

) “" x rs \ cosh (.2 = . % . cosh{y.(z=h
R D) J:.m(;f) oo I arar1+ 3 5 5, T R E I
-0 me | 3 -0 me i

7 X sinh (y,.) sinh (y,,h)
Tu _ "l’ - <\ sinh (7,,2)
e B £ () S e

kL sinh {y,(z—h)} .
R i T R

Using the remaining boundary conditions (5) and (6), the equations with the unknown
coefficients {x;} are given as:

r
rG, 3)+(| G.rf)rh &

—’-——— A = A~ 3 r a"l
( °T GJ"J‘ r kgo kmg J1(@nn)
r.
G« = Jk',n(r-‘)cosh (7mh)
i t 3
= ) X ; J (Yt
.\I:Z:O kmgl ymrl Slnh(‘ymh) I(Y )
G &, & Jin(1)
- . 1 (Im Srsr;
Gu-o“,..g.vmr.smh(}’mh)'l'(’ N Osr<r) (16
G G J"""G)
" v | e 3
Co—Bo)+ — x; e S (V'
( 0) Gug:o kmgl}'mrls‘nh(ymh) l(/ )
G & ,& JL.( h (y..h
_u ¢ im(1)cosh (7 )/|(7m’)

G) k-l)- ‘ mal Imly sinh (y'nh)

4
G| d om r

= _G.:é:ox,f mz-:l Bar Hfar) O <r<r) (D
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Equations (16) and (17) have the singularities (r;—r)'~": and (r;—r)'~"2 respectively.
Thus, by considering these singularities, we multiply

2\l -x, 2
(1-’-2) G,(3-x.,2;'—,)
r: rg
r EAES .
3 l—_z Gn 3—'(2,2;—;
r r3 ry

by eqns (16) and (17), and integrate r = 0 to r; and r = 0 to r, respectively, where we use
G.(3—k,.2;r/r}) instead of G,(2—k;.2; r*/r}). because the convergence of A% is faster.
The following sets of algebraic equations with respect to {x;} are given:

o

and

x

< (45— C)G, h( Girri\lri 2o
L g1l 2402 _ - - =
L vedni+ Y, xidus { = 7\ 7G| 7 Fa=ny O

k=0 k=0

(n=0.1.2....) (18)

o 2 el 2 432 B,'_C,)G AGrz.
Z 'rkl Al:..kl + Z ’tk. ;.-k. =- (r(o4_h.:,)ttl 2A: G:r% ()'l.ﬂ (n = 0' lvzv .. ') (19)

k=0 k=0

where

P ~Jea,
R Te » v [T e
An‘k ,,,g, (r| am) Jk,m<rl ".\-x,{-ln rl Xy
Gl - rs' * e L gl r\' r: ™
+G; mgl (I‘J am) Em'lk.m ;,: J)-A‘.+2n r_,a"'

. G, * . -3+ s .
Ar:,.k- = - —L Z (5— a;) E;t‘lkz.m(l)‘ll»x,#»ln(:l a:u)
[}

3

R = (Ve
3

me |

Aii == 3 (@) NELSi (D ki 2a(20)

me
G, = [r A r r
it} 2o A= el 2t
I=Ky £ ¥
G2\ "\rs e,

\ _ cosh (y,.h) , !
™ " sinh(y,h)’ ™ sinh(y.h)

a': = amrlv
Consequently, the present problem is reduced to eqns (18) and (19).

STRESS SINGULARITY

We introduce the generalized stress intensity factor K, at the corners. This factor is
similar to the stress intensity factor for a crack and can be defined as:
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KI’ = llﬂ}’ pf’(rl‘;:)é,n 0 (' = I' 2) (20)
.7

where {g,, ;) denotes polar coordinates as shown in Fig. 1. By substitution of eqn (7) into
eqn (20), K, is obtained with {x;} as follows:

2(’—) Sl =1

ry

_ = k=0 20

™y AV
- 3}° .
2 ~,(_ Y (i=2).
r k=0

K

In the neighborhood of the corners, in order to represent the shear stresses t, and 1, in
separating the singular terms, we expand J} (1) J,(a%,.7 ) by the first terms of the asymptotic
expansion as follows for large m:

Jim(u(a,ry) = —=T(1=x)27% ta™ V2eme Vi, r )5

( 1-2x, ) ( 1+2n
X Ccos | ta,ry— % Jcosi{ ax,ry—

y n). {22)

Substituting eqn (22) into eqns (13)-(15) and using the following formulae:

-

3 Y e !"
{#*+ (1 =a)?} ~~sin (x, arctan _Eg + ; n)

. d 4 ~ M,,," A e— —
fim ¥ Jim() ()€ cos (k/2)

im § Syl (atar,) e e
4 may

._2 "l‘t“" . 2 /2 t—a n+x,
DY —r——— - — Ky - ¢ [ 2
cos (k72) {(b*+(1—a)?} cos { w, arctan A + 5T {(r<t), (23)

shear stresses 1,4 and t,. can be written by separating the singular terms as follows:

[1] (h<€:z<w)

[ n

snfa(Ge)
H ~xy
iy cos (nx/2) t{%; (%’-) when ry <ry <r,
_Cos {Ki(m—¢ )}

L cos {nK,)

[}

cos (nx,/2)

sin {x,(z—¢,)}

g cos{ax,)

when ry <r, <r,

Fal
I

K, (p.)“"' when r\<r; <r, 29)

™\

when ry<r; <ry
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2] (~o<:<0)

T _ _cos{k:(r—91)} K; (p_)

T* cos (nk,) i \r,
e _sin{ra(n—962)} K (&) 25)
™ sin (nx.) ™ \r,

31 O©<:=<h
_cos {x(m—9,)}

. cos (nx,)
T_;g= KI (ﬂ)—xl
™ sin {x.(g+¢n)} EORNY

- cos (nx/2)

indn (T

sin {I\:(z +¢2)} K
- cos (nx,/2) t*r):

sin {x,(n~¢,)}

\ sin (nx))
Tz _ K (‘_’_L)ﬂ'
™ cos {x,(g+¢,>} T\
cos (7K, /2)

L (s ) & (2]

cos (1tk,/2) Ty

When r|<r]<f2

when ry <r, <r;

o
TN
~ "::
- *~
\/I

»

when ry <ry <r,

when ry<ry <r,

(26)

r

Hence, the stress fields in the neighborhood of the corners are obtained by the gener-
alized stress intensity factor K. By using the relationship between the shear stress t, and
the displacement v as:

T T

60:=5'% z=h ¢|_0,0sr$r¢)

T Th

—=— (z=0,0,=0,0<r<ry). (27)
2 3

Substituting eqns (24)-(26) into eqn (27). the following equations with respect to the order
of the singularity «, are obtained:

cos (nk,) = -—l—é— cos (tx;) = ——. (28)

= 14+ —
l+Gn + G
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The order of the stress singularity «; is related to the shear moduli G, (i = 1.2, 3) only. and
eqn (28) is the same as the one obtained by Keer and Freeman (1970) for a bar bonded to
a half space and Karasudhi er a/. (1984) by using Williams’ method (1952).

NUMERICAL RESULTS

In order to obtain accurate values of the generalized stress intensity factor K, we
should investigate the convergence of the infinite series in eqn (21) with respect to xi and
get accurate values of A% in eqns (18) and (19) in order to get x{ accurately. In the previous
paper. we could obtain the values of the coefficients as A% by truncating the infinite series,
because we did not calculate any value of the generalized stress intensity factor. But, in the
present investigation, we must get accurate values of 4} to obtain the accurate generalized
stress intensity factor. Thus, by using the asymptotic expansion as shown in the Appendix,
we calculate the remaining values of 4y and 422 in closed form. These coefficients are
exact in five-digits with 1000 terms. The values of 4)? and A4}/ can be obtained very
accurately by truncating at the number 200, because there are terms of 1/sinh (y,/) in these
series. Consequently we can get accurate values of A%} with the compact numerical cal-
culations. In Fig. 2, we show the relationship between the values of K (for r,/r, = 2.0,
ryr, = 1.2, G5/G, = 1.0, G,/G, = 0.5) and the reciprocal of truncated number L in the
infinite serics in eqn (21). With decreasing A, the convergence of K, is slow, although, in
this case, the error of K, is not important, because the value of K, is smaller than the one
of K, and decreases with decreasing . Moreover, the case when h/r, < 0.05and r; < r, is
the one with the worst convergence of K,. When r; is bigger than r,, both of the series for
K, and K, converge as well as K, in Fig. 2. From Fig. 2, it is shown that we can get

0.3 Wi
- Ki o1
02 o0s
< 02
c °
015

0.1 K1 o1

ons--.w \
0.05 v V
0 0.01 0.02 0.03 0.04 0.05
I

Fig. 2. The convergence of the generalized stress singularity K.

Ar

Tro/r ¥

>Z
Fig. 3. Constant 1, lines (A/ry = 0.2, ryfr, = 2.0, ry/r; = 1.2, G,/G, = 1.0, G4/G, = 0.5).
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A
/| Tez/T*

K2=0, 268
K1=0, 392

> 7
Fig. 4. Constant t,, lines (h/r, = 0.2, ryfr, = 2.0. r\/r, = 1.2. Go/G, = 1.0. G,/G, = 0.5).

Ki/(Tr™)
u x,=0,268 |, x =0, 392
u.sllllll [X] [} Liat (%]
0.4
< 0.3
Loz
01 l X } ]
0.0 &_\J\
0.5 06 0,7 0,8 0.9 1.0 L.! 1.2 1.3 L4 L5

Ts/ T
Fig. 5. Constant K, lines (G,/G, = 1.0, G,/G, = 0.5, ry/r, = 2.0).

Ko/ (T'r®)
Iy K =0, 268 K o=0, 268
0.5 EiLe L L VIR VI Y at u
ol [/
;: 0.3
= 17
AL [/~
0.0 \\-}\ —1 1~
0.6 0.6 0.7 0,8 0.9 {0 L. 1,2 L3 L4 L5
s/ '

Fig. 6. Constant K, lines (G,/G, = 1.0. G /G, = 0.5, rojr, = 2.0).
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Ki/(rr®)
K, 20,4417 x,=0.186
0. 5" L U (1] VA (Y]
|
0.4} | f e o M ! - !
< 0. 3|} I T S ’; '
L o2 ------ ‘ »
i /——""—_'— L
0. 1H-- i N DU DU R A A e Al
0.0 L b \ k : o
0.5 0.6 0.7 0.8 0.9 [0 LI 1.2 1.3 L4 I8

Pa/ Ty
Fig. 7. Constant K, lines (Go/G, = 1.0. G\/G, = 5. ry/r, = 2.0).

satisfactorily accurate values for K; by truncating at the number L = 50. Accordingly, in
the following calculations, we use the number L = 50.

Figures 3 and 4 show the constant stress lines of shear stresses 7y, and 7,4 (for A/r, = 0.2,
ryfry = 2.0,ry/ry = 1.2.G,/G, = 1.0, G;/G, = 0.5). Since the shear modulus is discontinuous
at the z = 0 and 4 planes, t,4 is discontinuous at these planes. Stresses are concentrated at
the corners. The values of stresses in the neighborhood of z = A4, r = r, are bigger than the
oncsatz=0,r=r,.

In order to investigate the relationship between these stress concentrations and the
geometry of the adhesive layer, we show the gencralized stress intensity factor K, denoted
in eqn (20) in Figs 5-8. Figures 5 and 6 show the relationship between K, & and ry with
G./G, = 1.0,Gy/G, = 0.5and ry/r, = 2.0. When ryis smaller than ry and it - 0, the problem
tends to the crack problem. Since the order of the stress singularity for the crack is 1/2 and
this order is bigger than the onc for the corner, K, increases to infinity with decrcasing A,
In Fig. 5, when ry is bigger than r, K, decreases to zero with decreasing A, because the
order of the singularity is I/3 with & = 0 and smaller than 0.392. In Fig. 6, when r, is bigger
than r,, K, decreases to zero with decreasing i, because this corner is a free surface with
h = 0. Figures 7 and 8 show the relationship between K, & and r, with G,/G, = 5.0,
G,/G, = 1.0 and ry/r, = 2.0. In Fig. 7, when r; is bigger than r,, K, increases to infinity
with decreasing h, because the order of the singularity is /3 with /i = 0 and bigger than
0.186.

Ko/ (T'r(?)
x2=0,447 K2=0,441
0 5“ (1] N ] a a8 [ §] Al
0.4
L /
L o2 /
N [ |/
] l /
0.0 —
0.5 0,6 0.7 0.8 0.9 1.0 1.1 t.2 1.3 1.4 L5
L/ Iy

Fig. 8. Constant K, lines (G,/G, = 1.0, G/G, = 5, ry/r, = 2.0).

SAS 27:8-1



1070 T. Tsun et al.
Table 1. The thickness of the adhesive layer which reduces X,.

Gi=G;<G; | G=G;>G,y
1) <T3<x, X ~ Thinner
134, <1y ‘Thicker ‘Thicker

Table | shows the choices of the thickness of the adhesive layer A which make stress
fields in the neighborhood of the corners smaller. Whenr, <r; <r,and G, = G, < G,,
we cannot select the thickness of the adhesive layer, because there is a conflict in the behavior
of K, and K, with respect to h. Therefore. we should choose the appropriate thickness by
considering the values of X, and K.

CONCLUSIONS

The generalized stress intensity factor at the corners of a bonded bar under torsion
was obtained. The analysis was performed by making use of the series expansion technique
with consideration of the stress singularity at the corners. The generalized stress intensity
factor was introduced at the corners, and the stress fields in the neighborhood of the corners
were shown by this factor. By these results, the stress singularities at each corner were
obtained. By numerical calculation, values of the generalized stress intensity factor at the
corners were obtained for the various mechanical and geometrical properties of the bars
and the adhesive layer, and these results were shown graphically. From these figures, it was
shown how to choose the thickness of the adhesive layer.
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APPENDIX

Asymptotic expansion for large m:

g . 1 1 b - }
oy - esERM35) =§Z 5 1 MM}-,.,[COS {a b r;od(z/Z) n}

Jia2) S5

3s—a—b—1+2j—mod (i/2)
2

+cos {Ztmn + n}] Clla.b,s.r) (Al)

where
Cia.b.s.r) = 1. Cila/b,s5,r)=0,

Cita.b.s.r) = gl;(lSs’—db’-& 1). Cla.b.s,r) =Cl(b.a,s.r),

1 R :
CHa.b.s.r) = — | ~2255* + 25*(30a® + 30h + 60r + 77) - 8(a* + h*) +20(a* + b*) -9}
6ds? \
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Cia.b.s,r) = &—1;—2[2255‘-#305:{ —2Aa* +hY)+ 1} ~16(ab)* —4(a* + b)) + 1]

Ca.b,s.r) = %;;[—33755%- 1355*{10(a® + b%) + 20r + 33}

+355° (—d(a* +5%) - 4(20° +5+4r)a* + 1267 +4r +3)
+16a% — 1300 + 20 (24b* — 60b° + [43) + 3(—4b* + 1067 = 21)]
Cia.b.s.r) = C(b.a.s.7)....
The summation of the right hand of eqn (A1) with m = M to infinity can be obtained in closed form by using the
following formulae:

© w-1

Y (x+m) " ={lr.x)= ¥ (x+m™ (AY)
m= b ma !
x Ko+ M.~ 3 K-t g -
X (x+m) "cos (smn+1x) = Z M cos (2skrn+2)4¢ r,x—ﬂ - Z "—ﬁ-#m (A3)
S 5, M) TE\ .,

where M., K, and K, are the integer values which are given by the following equations:

N, R M . R M
S-‘=A—'!-', l\..—mod(ﬁ—l"). A| —IHI(E).

{(r. x) is the generalized zeta function defined as follows :
rx)y= Y (v+h) .
k=

Accordingly, summation of the left hand side of eqn (A1) can be obtained in closed form as follows

SRR A € &) N 0 B SO Y £ o WY €L M)
L iy 2 L T ey

m—| LIS

(A oI Mo ~h- ]
+,on 'Y [{C(H—i,i‘)— L: (i+m) * ’}cos {" ”vmn:o_d__(ll_/z_) ﬂ}

-0 f=0 " -

Ky o, 1 3 . KoV ygy 3 N
- +k i+k
ML AR I A

+ “2;(“ 1, {\(PH M,) m};(M' +m> }

s~ —bh—1+2j—mod (i/2
xcos(l\'kn-b-}‘ ¢ 2 maed )n):IC,’(u.b.x.r+t). (Ad)

3

In Table A1, the values of eqn (A4) are listed for various values of ¢, b, s, r and M with [ = 5.

Table Al. The convergence of infinite serics.

M
a|b]s]r 100 200 500 1000 Converged
10 | 10 | 1.0] 3.3 0.74031e-03| 0.74031e-03] 0.74031@-03| 0.74011e-03| O.74031e-03
10 | 20 ] 1.0]3.3] 0.11418e-05] 0.11418e-05] 0.11418e-05] 0.11418e-05] 0.11418e-05
10 | 40 ] 1.0]3.3] 0.80299e-08] 0.98284e-08| 0.98293e-08] 0.98293e-08| 0.98293e-08
10 | 80 | 1.0 3.3)~0.71744e-05] -0.11054e-07] 0.98300e-10] 0.99429e-10] 0.99430a-10
20 | 20 1 1.003.3] 0.14913e-03| 0.149136-03| 0.14913e-03] 0.14913e-03] 0.14913e-03
20 |40 | 1.0]3.3]-0.40925-07] -0.46724a-07] -0.467290-07] -0.46729e-07| -0.16729e-07
20 | 80 {1.00 3.3 0.30020e-04] 0.46539e-07]-0.40886e-09| -0.41363e-09] ~0.41363e-09
40 |10 ]1.0]3.3] 0.30462¢-04] 0.30231a-04] 0.30230e-04] 0.30230e-04| 0.30230e-04
0 {80]1.0]3.3] 0.14968e-03] 0.25193e-06| ~0.18960e~08] -0.19232e-08} -0.19232e-08
a0 ] 80 |1.0]3.3] 0.30382e-02] 0.13408e-04] 0.61374e-05] 0.61363e-05] 0.61363a-05




